Перевод: с русского на все языки

со всех языков на русский

базовая дата

  • 1 базовая дата

    • výchozí datum

    Русско-чешский словарь > базовая дата

  • 2 базовая дата начала проекта

    Универсальный русско-английский словарь > базовая дата начала проекта

  • 3 базовая дата начала фазы

    Универсальный русско-английский словарь > базовая дата начала фазы

  • 4 базовая дата начала этапа

    Универсальный русско-английский словарь > базовая дата начала этапа

  • 5 базовая дата окончания проекта, фазы, этапа

    Универсальный русско-английский словарь > базовая дата окончания проекта, фазы, этапа

  • 6 базовая дата условий платежа

    SAP.fin. baseline date for payment

    Универсальный русско-английский словарь > базовая дата условий платежа

  • 7 базовый год

    1. base year
    2. base period
    3. base date
    4. basal

     

    базовый год
    базовая дата

    При расчете индексов-первый из ряда лет. Его часто принимают за 100, чтобы можно было сразу в процентах увидеть рост или падение, например, если индекс цен показывает, что нынешний показатель равен 120, это имеет смысл только в сравнении с более ранними показателями. Это можно записать так: 120 (базовый 1985 г. = 100); отсюда ясно, что с 1985 г. цены возросли на 20 %.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    базовый год
    базисный период
    В прогнозировании, планировании и других экономических расчетах, год (соответственно, период), к которому приводятся для сопоставимости расчетные показатели последующих лет (периодов, шагов расчета), называемые текущими. Если экономические показатели данного года приняты за базу сравнения, то возможны три основных способа сопоставления с ними показателей сравниваемого года (текущих показателей): 1.База сравнения принимается за единицу. Тогда относительные величины, приводящие показатель сравниваемого года к Б.г., называются коэффициентами или показателями кратности и выражаются целым или дробным числом. 2. База сравнения принимается за 100. Тогда относительные величины, приводящие показатели сравниваемого года к Б.г., выражаются процентами или долями процента. 3. База сравнения принимается за 1000. Тогда относительные величины, приводящие показатели сравниваемого года к Б.г., выражаются в промилле (единице, в 10 раз меньшей чем процент). См. также Дисконтирование.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    2.20 базовый год (base year): Исторический период, установленный для сопоставления во времени выбросов ПГ, процессов удаления ПГ или соответствующей информации по ПГ.

    Примечание - Выбросы или процессы удаления в течение условного базового года могут быть определены количественно за определенный период времени, например за реальный год, или быть усреднены за несколько периодов (например, несколько лет).

    Источник: ГОСТ Р ИСО 14064-1-2007: Газы парниковые. Часть 1. Требования и руководство по количественному определению и отчетности о выбросах и удалении парниковых газов на уровне организации оригинал документа

    2.20 базовый год (base year): Исторический период, установленный для сопоставления во времени выбросов ПГ, процессов удаления ПГ или соответствующей информации по ПГ.

    Примечание - Выбросы или процессы удаления в течение условного базового года могут быть определены количественно за определенный период времени, например за реальный год, или быть усреднены за несколько периодов (например, несколько лет).

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    9.3.1 базовый год (base year): Исторический период, установленный для сопоставления повремени выбросов парниковых газов (9.1.1), процессов удаления парниковых газов (9.1.6) или сопутствующей информации по ПГ.

    Примечание - Выбросы или процессы удаления в течение условного базового года могут быть определены количественно за определенный период времени (например, реальный год) или усреднены за несколько периодов времени (например, лет).

    [ИСО 14064-1:2006]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > базовый год

  • 8 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 9 время установки

    Русско-английский большой базовый словарь > время установки

  • 10 максимальный уровень

    1. III

    3.28 максимальный уровень: Максимально допустимый уровень наполнения резервуара жидкостью при его эксплуатации, установленный технической документацией на резервуар».

    Раздел 4. Наименование изложить в новой редакции: «4 Методы поверки».

    Пункт 4.1 после слова «методом» изложить в новой редакции:

    «Допускаются:

    - комбинация геометрического и объемного методов поверки, например, определение вместимости «мертвой» полости или вместимости резервуара в пределах высоты неровностей днища объемным методом при применении геометрического метода поверки;

    - комбинация динамического объемного и статического объемного методов поверки».

    Пункты 5.1.1 (таблица 1, головка), 5.1.2. Заменить значение: 50000 на 100000.

    Подраздел 5.2. Наименование. Заменить слово: «основных» на «рабочих эталонов».

    Подпункты 5.2.1.1, 5.2.1.2, 5.2.1.10, 5.2.2.5 изложить в новой редакции:

    «5.2.1.1 Рулетки измерительные 2-го класса точности с верхними пределами измерений 10, 20, 30 и 50 м по ГОСТ 7502.

    5.2.1.2 Рулетки измерительные с грузом 2-го класса точности с верхними пределами измерений 10, 20 и 30 м по ГОСТ 7502.

    5.2.1.10 Штангенциркуль с диапазонами измерений: от 0 до 125 мм; от 0 до 150 мм; от 150 до 500 мм; от 500 до 1600 мм (черт. 3) по ГОСТ 166.

    5.2.2.5 Рулетки измерительные с грузом 2-го класса точности с пределами измерений 10, 20 и 30 м по ГОСТ 7502».

    Подраздел 5.2 дополнить подпунктами - 5.2.1.19, 5.2.2.9:

    «5.2.1.19 Анализатор течеискатель АНТ-3.

    5.2.2.9 Анализатор течеискатель АНТ-3».

    Пункт 5.2.4. Заменить слова: «Основные средства поверки резервуаров» на «Применяемые рабочие эталоны и средства поверки».

    Пункт 5.2.5 дополнить словами: «по взрывозащищенности - ГОСТ 12.1.011».

    Подпункт 5.3.1.4 изложить в новой редакции:

    «5.3.1.4 Резервуар при первичной поверке должен быть порожним. При периодической и внеочередной поверках в резервуаре может находиться жидкость до произвольного уровня, а в резервуаре с плавающим покрытием - до минимально допустимого уровня, установленного в технологической карте резервуара.

    Плавающая крыша должна быть освобождена от посторонних предметов (от воды и других предметов, не относящихся к плавающей крыше)».

    Подпункт 5.3.1.5 до слов «В этом случае» изложить в новой редакции:

    «При наличии жидкости в резервуаре для нефтепродукта при его поверке (периодической или внеочередной) допускается использовать результаты измерений вместимости «мертвой» полости, полученные ранее, и вносить их в таблицу Б.9 приложения Б, если изменение базовой высоты резервуара по сравнению с результатами ее измерений в предыдущей поверке составляет не более 0,1 %, а изменения степени наклона и угла направления наклона резервуара составляют не более 1 %»;

    подпункт дополнить примечанием:

    «Примечание - Вместимость «мертвой» полости резервуара для нефти и нефтепродуктов, образующих парафинистые отложения, при проведении периодической и внеочередной поверок допускается принимать равной ее вместимости, полученной при первичной поверке резервуара или полученной при периодической поверке резервуара после его зачистки».

    Подпункт 5.3.2.1. Примечание после слов «до плюс 2 °С - при применении дизельного топлива» дополнить словами: «и воды;».

    Пункт 5.3.3 исключить.

    Пункт 6.1 после слов «(государственной) метрологической службы» дополнить знаком сноски:1); дополнить сноской:

    «1) На территории Российской Федерации орган государственной метрологической службы проходит аккредитацию на право проведения поверки резервуаров».

    Пункт 6.2 изложить в новой редакции:

    «6.2 Поверки резервуара проводят:

    - первичную - после завершения строительства резервуара или капитального ремонта и его гидравлических испытаний - перед вводом его в эксплуатацию;

    - периодическую - по истечении срока межповерочного интервала;

    - внеочередную - в случаях изменения базовой высоты резервуара более чем на 0,1 % по 9.1.10.3; при внесении в резервуар конструктивных изменений, влияющих на его вместимость, и после очередного полного технического диагностирования».

    Пункт 7.1. Заменить слова: «в установленном порядке» на «и промышленной безопасности в установленном порядке2)».

    Пункт 7.1, подпункт 7.1.1 дополнить сноской - 2):

    «2) На территории Российской Федерации действует Постановление Росгортехнадзора № 21 от 30.04.2002».

    Пункт 7.1 дополнить подпунктом - 7.1.1:

    «7.1.1 Измерения величин при поверке резервуара проводит группа лиц, включающая поверителя организации, указанной в 6.1, и не менее двух специалистов, прошедших курсы повышения квалификации, и других лиц (при необходимости), аттестованных по промышленной безопасности в установленном порядке2)».

    Пункт 7.3 дополнить подпунктом - 7.3.3:

    «7.3.3 Лица, выполняющие измерения, должны быть в строительной каске по ГОСТ 12.4.087».

    Пункт 7.6. Заменить слова: «или уровень» на «и уровень».

    Пункт 7.8 дополнить словами: «и должен быть в строительной каске по ГОСТ 12.4.087».

    Пункт 7.9 изложить в новой редакции:

    «7.9 Средства поверки по 5.2.1.4, 5.2.1.17, 5.2.1.19 при поверке резервуара геометрическим методом, средства поверки по 5.2.2.1, 5.2.2.2, 5.2.2.8, 5.2.2.9, 5.2.5 при поверке объемным методом должны быть во взрывозащищенном исполнении для групп взрывоопасных смесей категории II В-ТЗ по ГОСТ 12.1.011 и предназначены для эксплуатации на открытом воздухе».

    Пункт 7.10 после слова «резервуара» дополнить словами: «в рабочей зоне»;

    заменить слова: «на высоте 2000 мм» на «(на высоте 2000 мм)».

    Подпункт 8.2.8 исключить.

    Подпункт 9.1.1.1 изложить в новой редакции:

    «9.1.1.1 Длину окружности Lн измеряют на отметке высоты:

    - равной 3/4 высоты первого пояса, если высота пояса находится в пределах от 1500 до 2250 мм;

    - равной 8/15 высоты первого пояса, если высота пояса составляет 3000 мм.

    При наличии деталей, мешающих измерениям, допускается уменьшать высоту на величину до 300 мм от отметки 3/4 или 8/15 высоты первого пояса».

    Подпункт 9.1.1.7 после слов «динамометра усилием» изложить в новой редакции:

    «(100 ± 10) Н - для рулеток длиной 10 м и более;

    (10 ± 1) Н - для рулеток длиной 1 - 5 м.

    Для рулеток с желобчатой лентой - без натяжения».

    Подпункт 9.1.1.13. Формула (3). Знаменатель. Заменить знак: «-» на «+».

    Подпункт 9.1.1.17. Последний абзац изложить в новой редакции:

    «Значение поправок (суммарных при наличии двух и более) на обход в миллиметрах вносят в протокол, форма которого приведена в приложении Б».

    Подпункт 9.1.2.2 изложить в новой редакции:

    «9.1.2.2 Окружность первого пояса резервуара, измеренную по 9.1.1, разбивают на равные части (откладывают дугу постоянной длины и наносят вертикальные отметки на стенке первого пояса), начиная с образующей резервуара, находящейся в плоскости А (рисунок А.10а), проходящей через точку измерений уровня жидкости и базовой высоты резервуара на направляющей планке измерительного люка и продольную ось резервуара, с соблюдением следующих условий:

    - число разбивок должно быть четным;

    - число разбивок в зависимости от вместимости резервуара выбирают по таблице 3.

    Таблица 3

    Наименование показателя

    Значение показателя для вместимости резервуара, м3, не менее

    100

    200

    300

    400

    700

    1000

    2000

    3000

    5000

    10000

    20000

    30000

    50000

    100000

    Число разбивок

    24

    26

    28

    30

    32

    34

    36

    38

    40

    42

    44

    46

    48

    52

    Все отметки разбивок пронумеровывают по часовой стрелке в соответствии с рисунком А.10».

    Подпункт 9.1.2.5. Второй абзац. Заменить слова: «или ниже ребра» на «и ниже ребра».

    Пункт 9.1.3 изложить в новой редакции:

    «9.1.3 Определение степени наклона и угла направления наклона резервуара

    9.1.3.1 Степень наклона h и угол направления наклона j резервуара определяют по результатам измерений угла и направления наклона контура днища резервуара снаружи (или изнутри) с применением нивелира с рейкой.

    9.1.3.2 Степень наклона и угол направления наклона резервуара определяют в два этапа:

    - на первом этапе устанавливают номера двух противоположных отметок разбивки (образующих резервуара), через которые проходит приближенное направление наклона резервуара;

    - на втором этапе определяют степень наклона и угол уточненного направления наклона резервуара.

    9.1.3.3 Приближенное направление наклона резервуара определяют в следующей последовательности:

    а) проводят разбивку длины окружности первого пояса по 9.1.2.2;

    б) освобождают утор окраек днища (далее - утор днища) резервуара от грунта;

    в) устанавливают нивелир напротив первой отметки разбивки на расстоянии 5 - 10 м от резервуара и приводят его в горизонтальное положение;

    г) устанавливают рейку вертикально в точке на уторе днища, находящейся напротив первой отметки разбивки, отсчитывают показание шкалы рейки l1 с погрешностью до 1 мм;

    д) последовательно устанавливая рейку по часовой стрелке в точках на уторе днища, находящихся напротив отметок разбивки 2, 3,..., v, отсчитывают показания шкалы рейки l2, l3,..., lvс погрешностью до 1 мм;

    е) для снятия показаний рейки в оставшихся точках отметок разбивки нивелир устанавливают на расстоянии 5 - 10 м от резервуара напротив отметки разбивки (v +1) и, устанавливая рейку вторично в точке отметки разбивки v, вторично снимают показание рейки l¢v. При этом показание рейки в точке, находящейся напротив отметки разбивки v (крайней) до перенесения нивелира на другое место lv, должно совпадать с показанием рейки в этой же точке разбивки v после перенесения нивелира на другое место, то есть l¢v с погрешностью до 1 мм. Выполнение этого условия обеспечивается регулированием высоты нивелира после перенесения его на другое место.

    В случае невозможности выполнения вышеуказанного условия регулированием высоты нивелира на показание рейки в точках, находящихся напротив отметок разбивки (v + 1), (v + 2),..., s, вводят поправку, например на показание рейки в точке, находящейся напротив отметки разбивки (v + 1), l¢v+1 по формуле

    lv+1 = l¢v+1 + Dl,                                                        (3a)

    где l¢v+1 - показание рейки после перенесения нивелира на другое место, мм;

    Dl - поправка, мм. Ее значение определяют по формуле

    Dl = lv - l¢v,                                                          (3б)

    где lv - показание рейки, находящейся напротив отметки v до перенесения нивелира на другое место, мм;

    l¢v - показание рейки, находящейся напротив отметки v после перенесения нивелира на другое место, мм;

    ж) выполняя аналогичные операции по перечислению е), отсчитывают показания рейки до отметки разбивки т (т - число отметок разбивки длины окружности первого пояса резервуара).

    Показания шкалы рейки lk вносят в протокол, форма которого приведена в приложении Б (таблица Б.14).

    Определяют значение разности показаний шкалы рейки в точках утора днища, находящихся напротив двух противоположных отметок разбивки Dlk, мм (см. таблицу Б.14):

    - при числе отметок k от 1 до x002.png по формуле

    Dl¢k = lk - l(m/2+k);                                                              (3в)

    - при числе отметок от x003.png до т по формуле

    Dl²k = lk - l(k-m/2),                                                              (3г)

    где lk - показание шкалы рейки в точке, находящейся напротив k-й отметки, мм;

    l(m/2+k), l(k-m/2) - показания шкалы рейки в точках, находящейся напротив отметок разбивки (т/2 + k) и (k - т/2), мм;

    k - номер отметки разбивки. Его значения выбирают из ряда: 1, 2, 3, 4,..., т;

    т - число отметок разбивки длины окружности первого пояса резервуара.

    Строят график (рисунок А.10) функции Dlk, рассчитываемой по формулам (3в) и (3г). Если кривая, соединяющая точки графика Dlk относительно абсциссы, имеет вид синусоиды с периодом, равным отрезку 1 - т (кривая С на рисунке А.10), то резервуар стоит наклонно, если нет (кривая В) - резервуар стоит не наклонно.

    По максимальному значению разности (Dlk)max, определенному по формуле (3в) или (3г), устанавливают приближенное направление наклона резервуара (рисунок А.10б).

    Приближенное значение угла направления наклона резервуара jп определяют по формуле

    x004.png                                                               (3д)

    где N - число разбивок, отсчитываемое от первой отметки разбивки до приближенного направления наклона резервуара, равное k - 1.

    9.1.3.4 Степень наклона и уточненный угол направления наклона резервуара определяют в следующей последовательности:

    а) проводят дополнительное разбивание длины дуги противоположных разбивок (рисунок А.10б), например находящихся справа от отметок разбивки 6 и 18 (разбивки N5 и N17) и слева от отметок разбивки 6 и 18 (разбивки N6 и N18) от приближенного направления наклона контура днища, определенного по 9.1.3.3;

    б) длину дуги дополнительного разбивания DL, мм, соответствующую 1°, вычисляют по формуле

    x005.png

    где Lн - длина наружной окружности первого пояса резервуара, мм;

    в) дугу длиной, вычисленной по формуле (3е), откладывают справа и слева (наносят вертикальные отметки на стенке первого пояса), начиная с образующих (отметок разбивки), по которым проходит приближенное направление наклона резервуара. Отметки отложенных дополнительных дуг (разбивок) нумеруют арабскими цифрами справа и слева от приближенного направления наклона резервуара;

    г) выполняя операции, указанные в перечислениях в) и г) 9.1.3.3, отсчитывают показания шкалы рейки в точках дополнительного разбивания дуг основных разбивок, находящихся слева lл и справа lп от приближенного направления наклона резервуара, с погрешностью до 1 мм.

    Результаты показаний шкалы lл, lп вносят в протокол, форма которого приведена в приложении Б».

    Подпункт 9.1.6.1 изложить в новой редакции:

    «9.1.6.1. Высоту поясов hн измеряют с наружной стороны резервуара вдоль образующей резервуара, находящейся в плоскости А (рисунок А.10а) по 9.1.2.2, при помощи измерительной рулетки с грузом и упорного угольника».

    Подпункт 9.1.7.1 после слов «от днища резервуара» изложить в новой редакции: «и от стенки первого пояса резервуара lд угла j1 между плоскостью А и плоскостью С (рисунок А.10а). Значение угла j1 определяют методом разбивания длины окружности первого пояса с погрешностью ± 1° в следующей последовательности:

    - длину окружности первого пояса изнутри резервуара разбивают на восемь частей, начиная с плоскости А (рисунок А.10а), по часовой стрелке;

    - на днище резервуара через его центр и точки разбивки проводят восемь радиусов;

    - устанавливают номер сектора, в пределах которого находится плоскость С (рисунок А.10а);

    - в пределах вышеустановленного сектора на стенке резервуара до плоскости С откладывают (размечают) n0-ное число дополнительных хорд длиной S0, соответствующей 1°, вычисляемой по формуле

    x006.png

    - значение угла j1 определяют по формуле

    j1 = 45N0 + п0,

    где N - число больших разбиваний;

    п0 - число отложений хорды S0 до плоскости С.

    Результаты измерений величин N0, n0, j1 вносят в протокол, форма которого приведена в приложении Б».

    Подпункт 9.1.6.5 дополнить абзацем:

    «Толщину слоя внутреннего антикоррозионного покрытия dс.п измеряют при помощи ультразвукового толщиномера с погрешностью до 0,1 мм».

    Подпункт 9.1.6.6 перед словом «вносят» дополнить обозначением: dс.п.

    Пункт 9.1.8. Наименование дополнить словами: «и параметров местных неровностей (хлопунов)».

    Подпункт 9.1.8.1 изложить в новой редакции:

    «9.1.8.1 Если резервуар имеет несколько приемно-раздаточных патрубков, то высоту «мертвой» полости, соответствующую j-му приемно-раздаточному патрубку (hм.п)j, измеряют рулеткой по стенке резервуара от днища резервуара до нижней точки j-го приемно-раздаточного патрубка. Нумерацию высот «мертвой» полости проводят, начиная с плоскости А (рисунок А.10а).

    Если резервуар имеет приемно-раздаточные устройства, например, устройства ПРУ-Д, то измеряют рулеткой (рисунок А.17а):

    - высоту по стенке резервуара от контура днища до места установки j-го приемно-раздаточного устройства hyj;

    - расстояние от нижнего образующего j-го приемно-раздаточного устройства до его нижнего или верхнего среза hcj;

    - длину j-го приемно-раздаточного устройства (расстояние от центра среза устройства до стенки резервуара) lcj.

    Результаты измерений величин (hм.п)j, hyj, hcj, lcj в миллиметрах вносят в протокол, форма которого приведена в приложении Б».

    Подпункт 9.1.8.2. Второй абзац. Заменить слова: «с восемью радиусами» на «с 24 радиусами», «восьми радиусов» на «24 радиусов», «8 равных частей» на «24 равных части»;

    заменить значение: 0 - 8 на 0 - 24;

    третий абзац изложить в новой редакции:

    «- при отсутствии центральной трубы нивелир устанавливают в центре днища резервуара и измеряют расстояние по вертикали от неровностей днища до визирной линии (до центра окуляра) нивелира (b0) при помощи измерительной рулетки с грузом или рейкой. При наличии центральной трубы нивелир устанавливают последовательно в двух противоположных точках, не лежащих на отмеченных радиусах и отстоящих от стенки резервуара не более 1000 мм».

    Пункт 9.1.8 дополнить подпунктами - 9.1.8.4 - 9.1.8.7:

    «9.1.8.4 Угол j2 между плоскостью А (рисунок А.10а) и плоскостью В, проходящую через продольные оси приемно-раздаточного патрубка и резервуара, определяют с погрешностью не более ± 1°, используя данные разбивки длины окружности первого пояса по 9.1.2.2 в следующей последовательности:

    - устанавливают число полных разбивок N¢0, находящихся до плоскости В (рисунок А.10а);

    - по длине дуги разбивки, в пределах которой проходит плоскость В, размечают до образующей приемно-раздаточного патрубка n¢0-ное число дополнительных дуг длиной DL, соответствующей 1°. Длину дуги DL, мм, вычисляют по формуле

    x007.png

    - значение угла j2 определяют по формуле

    x008.png

    где m - число разбивок длины окружности первого пояса резервуара;

    rп.р - радиус приемно-раздаточного патрубка, мм.

    9.1.8.5 Результаты измерений величины j2 вносят в протокол, форма которого приведена в приложении Б.

    9.1.8.6 В случае определения вместимости «мертвой» полости объемным статическим методом в соответствии с 9.2.2 результаты измерений оформляют протоколом поверки для «мертвой» полости по форме, приведенной в приложении В (заполняют таблицы В.4, В.6, В.8).

    9.1.8.7 Площадь хлопуна sx, м2, определяют по результатам измерений длины и ширины хлопуна.

    Длину lх и ширину bх хлопуна измеряют измерительной рулеткой. Показания рулетки отсчитывают с точностью до 1 мм.

    Высоту хлопуна hx измеряют штангенциркулем или измерительной линейкой. Показания штангенциркуля или линейки отсчитывают с точностью до 1 мм.

    Результаты измерений величин lx, bх, hx вносят в протокол, форма которого приведена в приложении Б».

    Подпункт 9.1.9.1 изложить в новой редакции:

    «9.1.9.1 Измеряют расстояние по горизонтали между линейкой, установленной вертикально по первой внешней образующей резервуара (рисунок А.10), и внешней образующей измерительного люка l1 (рисунок А.16) при помощи измерительной рулетки с погрешностью ± 5 мм».

    Подпункт 9.1.10.1. Второй абзац изложить в новой редакции:

    «При наличии жидкости в резервуарах с плавающим покрытием уровень ее должен быть не ниже уровня, установленного технологической картой на резервуар»;

    дополнить абзацем:

    «Базовую высоту резервуара с плавающей крышей измеряют через измерительный люк, установленный на направляющей стойке плавающей крыши или на трубе для радарного уровнемера (рисунок А.2а)».

    Подпункт 9.1.10.3 изложить в новой редакции:

    «9.1.10.3 Базовую высоту измеряют ежегодно. Ежегодные измерения базовой высоты резервуара проводит комиссия, назначенная приказом руководителя предприятия - владельца резервуара, в состав которой должен быть включен специалист, прошедший курсы повышения квалификации по поверке и калибровке резервуаров.

    При ежегодных измерениях базовой высоты резервуара без плавающего покрытия резервуар может быть наполнен до произвольного уровня, резервуар с плавающим покрытием - до минимально допустимого уровня.

    Результат измерений базовой высоты резервуара не должен отличаться от ее значения, указанного в протоколе поверки резервуара, более чем на 0,1 %.

    Если это условие не выполняется, то проводят повторное измерение базовой высоты при уровне наполнения резервуара, отличающимся от его уровня наполнения, указанного в протоколе поверки резервуара, не более чем на 500 мм.

    Результаты измерений базовой высоты оформляют актом, форма которого приведена в приложении Л.

    При изменении базовой высоты по сравнению с ее значением, установленным при поверке резервуара, более чем на 0,1 % устанавливают причину и устраняют ее. При отсутствии возможности устранения причины проводят внеочередную поверку резервуара.

    Примечание - В Российской Федерации специалисты проходят курсы повышения квалификации в соответствии с 7.1».

    Подпункт 9.1.11.1 перед словом «берут» дополнить словами: «а также верхнее положение плавающего покрытия h¢п».

    Подпункт 9.1.11.2 изложить в новой редакции:

    «9.1.11.2 Высоту нижнего положения плавающего покрытия hп измеряют рулеткой от точки касания днища грузом рулетки до нижнего края образующей плавающего покрытия. Показания рулетки отсчитывают с точностью до 1 мм. Измерения проводят не менее двух раз. Расхождение между результатами двух измерений должно быть не более 2 мм».

    Подпункт 9.1.11.3 после слов «и результаты измерений» дополнить обозначением: h¢п.

    Подраздел 9.1 дополнить пунктами - 9.1.12, 9.1.13:

    «9.1.12 Определение длины внутренней окружности вышестоящего пояса резервуара с плавающей крышей

    9.1.12.1 При отсутствии возможности применения приспособления, показанного на рисунке А.6, длину внутренней окружности вышестоящего пояса определяют:

    второго пояса (при высоте поясов от 2250 до 3000 мм) или третьего (при высоте поясов 1500 мм) - методом отложения хорд по внутренней стенке пояса;

    вышестоящих поясов, начиная с третьего (при высоте поясов от 2250 до 3000 мм) или, начиная с четвертого (при высоте поясов от 1500 мм), - по результатам измерений радиальных отклонений образующих резервуара, проведенных изнутри резервуара.

    9.1.12.2 Хорды откладывают на уровнях, отсчитываемых от верхней плоскости плавающей крыши:

    1600 мм - при высоте поясов от 2250 до 3000 мм;

    1200 мм - при высоте поясов 1500 мм.

    9.1.12.3 Перед откладыванием хорд на уровне 1600 мм или на уровне 1200 мм, указанных в 9.1.12.2, при помощи рулетки с грузом через каждые 1000 мм наносят горизонтальные отметки длиной 10 - 20 мм по стенке поясов.

    9.1.12.4 Отметки, нанесенные по стенкам поясов на уровнях, указанных в 9.1.12.2, соединяют между собой, применяя гибкую стальную ленту (рулетку). При этом линии горизонтальных окружностей проводят толщиной не более 5 мм.

    9.1.12.5 Вычисляют длину хорды S1 по формуле

    S1 = D1sin(a1/2),                                                      (3ж)

    где D1 - внутренний диаметр первого пояса резервуара, вычисляемый по формуле

    D1 = Lвн/p,                                                             (3и)

    где Lвн - внутренняя длина окружности первого пояса, вычисляемая по формуле (Г.2);

    a1 - центральный угол, соответствующий длине хорды S1 вычисляемый по формуле

    a1 = 360/m1,                                                         (3к)

    где т1 - число отложений хорд по линиям горизонтальных окружностей. Число т1 в зависимости от номинальной вместимости резервуара принимают по таблице 4.

    Таблица 4

    Номинальная вместимость резервуара, м3

    Число отложений хорд т1

    Номинальная вместимость резервуара, м3

    Число отложений хорд т1

    100

    24

    3000 (4000)

    38

    200

    26

    5000

    40

    300

    28

    10000

    58

    400

    32

    20000

    76

    700

    34

    30000

    80

    1000

    34

    50000

    120

    2000

    36

    100000

    160

    9.1.12.6 Хорду S1, длина которой вычислена по формуле (3ж), откладывают по линии горизонтальной окружности, проведенной на высоте 1600 мм и на высоте 1200 мм, указанных в 9.1.12.2, при помощи штангенциркуля (ГОСТ 166, черт. 3) с диапазоном измерений от 500 до 1600 мм.

    9.1.12.7 После отложений хорд по 9.1.12.6 измеряют длину остаточной хорды Soп при помощи штангенциркуля с диапазоном измерений 0 - 150 мм с погрешностью не более 0,1 мм. Обозначение «п» соответствует термину: «покрытие».

    9.1.12.8 Значения величин S1 и S0п вносят в протокол, форма которого приведена в приложении Б.

    9.1.12.9 Длины внутренних окружностей поясов, находящихся выше поясов, указанных в 9.1.12.1, определяют по результатам измерений радиальных отклонений образующих резервуара от вертикали изнутри резервуара с применением измерительной каретки (далее - каретки) в следующей последовательности:

    а) длину окружности первого пояса, измеренную по 9.1.1, разбивают на равные части по 9.1.2.2 (наносят вертикальные отметки на уровне 1600 мм или на уровне 1200 мм в соответствии с 9.1.12.3), начиная с плоскости А (рисунок А.10а);

    б) штангу 12 с блоком 11 (рисунок А.2а), при помощи которого каретка перемещается по внутренней поверхности резервуара, устанавливают у края площадки обслуживания 13;

    в) линейку 6 устанавливают на высоте 400 мм по перечислению а) 9.1.12.9 от верхней плоскости плавающей крыши при помощи магнитного держателя 7 перпендикулярно к стенке резервуара, поочередно для каждой отметки разбивки;

    г) для перехода от одной отметки разбивки к другой каретку опускают, а штангу со всей оснасткой передвигают по кольцевой площадке обслуживания резервуара. Расстояние от стенки резервуара до нити отвеса а отсчитывают по линейке 6;

    д) измерения вдоль каждой образующей резервуара начинают с отметки разбивки под номером один первого пояса. На каждом следующем поясе измерения проводят в трех сечениях: среднем, находящемся в середине пояса, нижнем и верхнем, расположенных на расстоянии 50 - 100 мм от горизонтального сварочного шва. На верхнем поясе - в двух сечениях: нижнем и среднем. Отсчеты по линейке снимают с погрешностью в пределах ± 1 мм в момент, когда каретка установлена в намеченной точке при неподвижном отвесе;

    е) в начальный момент каретку для всех образующих резервуара останавливают на линии горизонтальной окружности на уровне 1600 мм или на уровне 1200 мм.

    Результаты измерений расстояния а в миллиметрах вносят в протокол, форма которого приведена в приложении Б.

    9.1.13 Высота газового пространства в плавающей крыше

    9.1.13.1 Высоту газового пространства hгп (3.25) измеряют при помощи измерительной рулетки с грузом или линейкой не менее двух раз. Расхождение между результатами двух измерений не должно превышать 1 мм.

    9.1.13.2 Результаты измерений hгп вносят в протокол, форма которого приведена в приложении Б».

    Пункт 9.2.1 дополнить перечислением - е):

    «е) угла j2 в соответствии с 9.1.8.4».

    Подпункт 9.2.1.2. Заменить номер подпункта: 9.2.1.2 на 9.2.1.1;

    перед словом «вносят» дополнить обозначением: j2.

    Пункт 9.2.2. Наименование дополнить словами: «или в пределах высоты неровностей днища».

    Подпункт 9.2.2.1 после слов «В пределах «мертвой» полости» дополнить словами: «(рисунок А.17) и в пределах неровностей днища (рисунок А.18), если неровности днища выходят за пределы «мертвой» полости;

    заменить слова: «не более чем на 30 мм» на «в пределах от 10 до 100 мм».

    Подпункт 9.2.2.2. Перечисление д). Заменить слова: «значения 30 мм» на «значения в пределах от 10 до 100 мм».

    Пункт 9.2.3 после слов «выше «мертвой» полости» дополнить словами: «или выше высоты неровностей днища».

    Подпункт 9.2.3.1 после слов «высоте «мертвой» полости» дополнить словами: «(высоте неровностей днища)».

    Подпункт 9.2.3.2 после слов «в пределах «мертвой» полости» дополнить словами: «(до высоты неровностей днища)».

    Подпункт 9.2.3.3. Исключить слова: «в соответствии с 9.2.2.2, 9.2.2.3».

    Пункт 9.2.3 дополнить подпунктом - 9.2.3.6:

    «9.2.3.6 При достижении уровня поверочной жидкости, соответствующего полной вместимости резервуара, измеряют базовую высоту резервуара Нб в соответствии с 9.1.10. Значение базовой высоты не должно отличаться от значения, измеренного по 9.2.1, более чем на 0,1 %».

    Подпункт 9.2.5.1. Последний абзац. Заменить значение: ± 0,1 °С на ± 0,2 °С.

    Пункт 9.2.6, подпункты 9.2.6.1, 9.2.6.2 исключить.

    Подпункт 10.3.1.1. Заменить слова: «максимального уровня Hmax» на «предельного уровня Нпр»;

    формулу (4) изложить в новой редакции:

    x009.png     (4)»;

    экспликацию после абзаца «fл - высота точки касания днища грузом рулетки;» дополнить абзацем:

    «Lвн - длина внутренней окружности 1-го пояса, вычисляемая по формуле (Г.2)».

    Подпункт 10.3.1.2. Формулы (5) - (8) изложить в новой редакции:

    x010.png                                                       (5)

    x011.png                                               (6)

    x012.png на участке от Нм.п до Нп,                    (7)

    где DV²в.д - объем внутренних деталей, включая объемы опор плавающего покрытия, на участке от Нм.п до Нп;

    x013.png - на участке от Нм.п до Нп.         (8)»;

    последний абзац, формулы (9), (10) и экспликации исключить.

    Подпункт 10.3.1.5 и формулы (11) - (15) исключить.

    Подпункт 10.3.2.1 изложить в новой редакции:

    «10.3.2.1 Градуировочную таблицу составляют, суммируя последовательно, начиная с исходного уровня (уровня, соответствующего высоте «мертвой» полости Нм.п), вместимости резервуара, приходящиеся на 1 см высоты наполнения, в соответствии с формулой

    x014.png                                        (16)

    где Vм.п - вместимость «мертвой» полости, вычисляемая по формуле (Е.12) при изменении k от 0 до v, или по формуле, приведенной в Е.13;

    Vk, Vk-1 - дозовые вместимости резервуара при наливе в него k и (k - 1) доз, соответствующие уровням Нk, H(k-1), вычисляемые по формуле (Е.12) при изменении k от v + 1 до значения k, соответствующего полной вместимости резервуара, или по формулам (Е.13), (Е.14) приложения Е и т.д.

    Вместимость «мертвой» полости резервуара вычисляют по формуле

    x015.png

    где V0 - объем жидкости до точки касания днища грузом рулетки».

    Пункт 11.1. Второй абзац исключить.

    Пункт 11.2. Перечисление д) дополнить словами: «(только в случае проведения расчетов вручную)».

    Пункт 11.3. Первый абзац после слов «в приложении В» изложить в новой редакции: «Форма акта измерений базовой высоты резервуара, составленного при ежегодных ее измерениях, приведена в приложении Л»;

    последний абзац изложить в новой редакции:

    «Протокол поверки подписывают поверитель и лица, принявшие участие в проведении измерений параметров резервуара»;

    дополнить абзацем:

    «Титульный лист и последнюю страницу градуировочной таблицы подписывает поверитель. Подписи поверителя заверяют оттисками поверительного клейма, печати (штампа). Документы, указанные в 11.2, пронумеровывают сквозной нумерацией, прошнуровывают, концы шнурка приклеивают к последнему листу и на месте наклейки наносят оттиск поверительного клейма, печати (штампа)».

    Пункт 11.4 изложить в новой редакции:

    «11.4 Градуировочные таблицы на резервуары утверждает руководитель организации национальной (государственной) метрологической службы или руководитель метрологической службы юридического лица, аккредитованный на право проведения поверки».

    Раздел 11 дополнить пунктом - 11.6 и сноской:

    «11.6 Если при поверке резервуара получены отрицательные результаты даже по одному из приведенных ниже параметров:

    - значение вместимости «мертвой» полости имеет знак минус;

    - размеры хлопунов не соответствуют требованиям правил безопасности1);

    - значение степени наклона резервуара более 0,02, если это значение подтверждено результатами измерений отклонения окраек контура днища резервуара от горизонтали, выполненных по методике диагностирования резервуара, то резервуар считается непригодным к эксплуатации и выдают «Извещение о непригодности»;

    «1) На территории Российской Федерации действует Постановление Росгортехнадзора № 76 от 09.06.2003 об утверждении Правил устройства вертикальных цилиндрических стальных резервуаров для нефти и нефтепродуктов».

    Приложение А дополнить рисунками - А.2а, А.10а (после рисунка А.10), А.10б, А.10в, А.11а, А.17а;

    рисунки А.10, А.14, А.15, А.16 изложить в новой редакции:

    x016.jpg

    1 - неровности днища; 2 - плавающая крыша; 3, 15 - измерительный люк; 4, 23 - опоры плавающей крыши; 5 - груз отвеса; 6 - линейка;

    Рисунок А.2а - Схема измерений радиальных отклонений образующих резервуара с плавающей крышей

    x017.jpg

    1 - контур днища резервуара; 2 - измерительный люк; Dlk - функция, вычисляемая по формулам (3в) и (3г);

    Рисунок А.10 - График функции Dlk и схема направления наклона резервуара

    x018.jpg

    1 - стенка резервуара; 2 - приемно-раздаточный патрубок; 3 - измерительный люк; 4 - внутренняя деталь;

    Рисунок А.10а - Схема измерений координат внутренней детали

    x019.jpg

    1 - дополнительные отметки справа; 2 - уточненное направление наклона контура днища;

    x020.png j = jп - п2 = 255 - 3 = 252°

    Рисунок А.10б - Схема определения угла направления наклона днища

    x021.jpg

    l¢n, l²n - максимальное и минимальное показания рейки по уточненному направлению наклона контура днища;

    x022.png

    Рисунок А.10в - Схема наклоненного резервуара

    Описание: Untitled-1

    1 - плавающая крыша с опорами; 2 - груз отвеса; 3 - линейка; 4 - нить отвеса; 5 - верхняя площадка обслуживания;

    Рисунок А.11а - Схема измерений степени и угла направления наклона резервуара с плавающей крышей

    x024.jpg

    1 - 24 - радиусы; 25 - приемно-раздаточный патрубок; 26 - рейка; 27 - горизонт нивелира; 28 - нивелир;

    Рисунок А.14 - Нивелирование днища резервуара при отсутствии центральной трубы

    x025.jpg

    1 - 24 - радиусы; 25 - приемно-раздаточный патрубок; 26 - рейка; 27 - рейка в точке касания днища грузом рулетки;

    Рисунок А.15 - Нивелирование днища резервуара при наличии центральной трубы

    x026.jpg

    1 - кровля резервуара; 2 - измерительный люк; 3 - направляющая планка; 4 - точка измерений уровня жидкости или

    Рисунок А.16 - Схема размещения измерительного люка

    x027.jpg

    1, 3 - приемно-раздаточные устройства; 2 - стенка резервуара; 4 - неровности днища; 5 - контур днища;

    Рисунок А.17а - Схема размещения приемно-раздаточных устройств

    Приложение Б. Таблицу Б.1 изложить в новой редакции:

    Таблица Б.1 - Общие данные

    Код документа

    Регистрационный номер

    Дата

    Основание для проведения поверки

    Место проведения поверки

    Средства измерений

    Резервуар

    Число

    Месяц

    Год

    Тип

    Номер

    Назначение

    Наличие угла наклона

    Погрешность определения вместимости резервуара, %

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    Примечание - В графе 12 указывают знак «+» при наличии угла наклона, знак «-» - при его отсутствии.

    таблицу Б.4 изложить в новой редакции:

    Таблица Б.4 - Радиальные отклонения образующих резервуара от вертикали

    Номер пояса

    Точка измерения

    Показание линейки а, мм

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    ...

    ...

    т

    I

    3/4h1

    II

    Н

    С

    В

    III

    Н

    С

    в

    IV

    н

    с

    в

    V

    н

    с

    в

    VI

    н

    с

    в

    ...

    ...

    n

    н

    с

    Примечание - При наличии ребра жесткости, например, в v-м поясе (9.1.2.5):

    а) если ребро жесткости находится в середине пояса, то в строке «С» вносят показание линейки, определенное по формуле

    x028.png

    где x029.png, x030.png - показания линейки в точках выше и ниже ребра жесткости;

    б) если ребро жесткости находится ближе к верхнему или нижнему сварному шву, то среднее расстояние от стенки резервуара до нити отвеса вычисляют по формуле

    x031.png

    где x032.png - показание линейки в точке выше нижнего (ниже верхнего) сварного шва.

    дополнить таблицей - Б.4.1:

    Таблица Б.4.1 - Длины хорд

    В миллиметрах

    Уровень отложений хорды

    Хорда

    основная S1п

    остаточная S0п

    1-е измерение

    2-е измерение

    1600

    1200

    Таблица Б.5. Наименование изложить в новой редакции:

    «Таблица Б.5 - Параметры поверочной и хранимой жидкостей (нефти и нефтепродуктов)»;

    дополнить таблицей - Б.5.1:

    Таблица Б.5.1 - Радиальные отклонения образующих первого (второго или третьего для резервуаров с плавающей крышей) и последнего n-го поясов от вертикали

    В миллиметрах

    Номер пояса

    Радиальные отклонения образующих поясов от вертикали

    1

    2

    3

    4

    5

    6

    7

    ...

    ...

    т

    I (II или III)

    n

    таблицу Б.6 дополнить графой - 7:

    Толщина слоя антикоррозионного покрытия dс.п, мм

    7

    таблицы Б.7, Б.8, Б.9 изложить в новой редакции:

    Таблица Б.7 - Внутренние детали цилиндрической формы

    Диаметр, мм

    Высота от днища, мм

    Расстояние от стенки первого пояса lд, мм

    Число разбиваний

    Угол j1,...°

    Нижняя граница hвд

    Верхняя граница hвд

    N0

    n0

    Таблица Б.8 - Внутренние детали прочей формы

    Объем, м3

    Высота от днища, мм

    Расстояние от стенки первого пояса lд, мм

    Число разбиваний

    Угол j1,...°

    Нижняя граница hвд

    Верхняя граница hвд

    N0

    n0

    Таблица Б.9 - Параметры «мертвой» полости с приемно-раздаточным патрубком (ПРП)

    Высота hм.п, мм, ПРП под номером

    Угол j2,...°, ПРП под номером

    Вместимость Vм.п, м3

    1

    2

    3

    4

    1

    2

    3

    4

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Примечание - Графу 9 заполняют только при определении вместимости «мертвой» полости объемным методом и принятие вместимости «мертвой» полости по 5.3.1.5.

    дополнить таблицами - Б.9.1, Б.9.2:

    Таблица Б.9.1 - Параметры «мертвой» полости с приемно-раздаточным устройством (ПРУ)

    Высота установки hу, мм, ПРУ под номером

    Расстояние hc, мм, ПРУ под номером

    Длина lс, мм, ПРУ под номером

    Угол j2,...°, ПРУ под номером

    Вместимость

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Примечание - Число граф в зависимости от числа приемно-раздаточных устройств может быть увеличено.

    Таблица Б.9.2 - Параметры местных неровностей (хлопунов)

    Хлопун

    Длина lх

    Ширина bх

    Высота hх

    Таблица Б.10. Графа 1. Заменить значение: 8 на 24;

    дополнить примечанием - 3:

    «3 При отсутствии центральной трубы вносят (графа 3) значение b0»;

    таблицы Б.13, Б.14 изложить в новой редакции:

    Таблица Б.13 - Базовая высота резервуара

    В миллиметрах

    Точка измерения базовой высоты Нб

    Номер измерения

    1

    2

    Риска измерительного люка

    Верхний срез измерительного люка

    Таблица Б.14 - Степень наклона и угол приближенного направления наклона резервуара

    Номер точки разбивки k от 1 до т/2

    Отсчет по рейке lk, мм

    Номер точки разбивки k от (m/2 + l) до т

    Отсчет по рейке lk, мм

    1

    2

    3

    4

    1

    l1

    m/2 + 1

    l(m/2 + 1)

    2

    l2

    m/2 + 2

    l(m/2 + 2)

    3

    l3

    m/2 + 3

    l(m/2 + 3)

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    m/2

    l(m/2)

    т

    lm

    Примечания

    1 k (графы 1, 3)- номер разбивки длины окружности первого пояса резервуара, выбирают из ряда: 1, 2, 3,..., т.

    2 lk (графы 2, 4) - отсчеты по рейке в точках разбивки k.

    дополнить таблицей - Б.14.1:

    Таблица Б.14.1 - Степень наклона и угол уточненного направления наклона резервуара

    Значение угла n2 при Nп =...

    Показание рейки по правой разбивке lп, мм

    Значение угла n2 при Nл =...

    Показание рейки по правой разбивке lл, мм

    l¢п

    l²п

    l¢л

    l²л

    1

    2

    3

    4

    5

    6

    -1°

    +1°

    -2°

    +2°

    -3°

    +3°

    -4°

    +4°

    -5°

    +5°

    -6°

    +6°

    -7°

    +7°

    -8°

    +8°

    -9°

    +9°

    -10°

    +10°

    -11°

    +11°

    -12°

    +12°

    -13°

    +13°

    -14°

    +14°

    Примечания

    1 В графах 1, 4 вносят числа разбивок Nп, Nл (например Nп = 17).

    2 l¢п, l²п (графы 2, 3) - показания рейки по правым противоположным разбивкам.

    3 l¢л, l²л (графы 5, 6) - показания рейки по левым противоположным разбивкам.

    таблицу Б.15 изложить в новой редакции:

    Таблица Б.15 - Плавающее покрытие

    Масса тп, кг

    Диаметр Dп, мм

    Расстояние от днища резервуара при крайнем положении, мм

    Диаметр отверстия, мм

    Параметры опоры

    Уровень жидкости в момент всплытия Hвсп, мм

    Объем жидкости в момент всплытия Vвсп, м3

    нижнем hп

    верхнем hп

    D1

    D2

    D3

    Диаметр, мм

    Число, шт.

    Высота, мм

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Примечания

    1 Если опоры плавающего покрытия приварены к днищу резервуара, то их относят к числу внутренних деталей.

    2 Графы 11 и 12 заполняют только при применении объемного метода.

    дополнить таблицей - Б.16:

    Таблица Б.16 - Высота газового пространства в плавающей крыше

    В миллиметрах

    Точка измерения высоты газового пространства hгп

    Номер измерения

    1

    2

    Риска измерительного люка

    Верхний срез измерительного люка

    Приложение В. Таблицы В.3, В.5 изложить в новой редакции:

    Таблица В.3 - Величины, измеряемые в «мертвой» полости

    Высота hм.п, мм, ПРП под номером

    Угол j2,...°, ПРП под номером

    Отчет по рейке в точке, мм

    1

    2

    3

    4

    1

    2

    3

    4

    касания днища грузом рулетки bл

    пересечения 1-го радиуса и 8-й окружности b8.1

    Таблица В.5 - Степень наклона и угол приближенного направления наклона резервуара

    Номер точки разбивки k от 1 до m/2

    Отсчет по рейке lk, мм

    Номер точки разбивки k от (m/2 + 1) до т

    Отсчет по рейке lk, мм

    1

    2

    3

    4

    1

    l1

    m/2 + 1

    l(m/2 + l)

    2

    l2

    m/2 + 2

    l(m/2 + 2)

    3

    l3

    m/2 + 3

    l(m/2 + 3)

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    ...

    m/2

    l(m/2)

    т

    lm

    Примечания

    1 k (графы 1,3)- номер разбивки длины окружности первого пояса резервуара, выбирают из ряда: 1, 2, 3,..., т.

    2 lk (графы 2, 4) - отсчеты по рейке в точках разбивки k.

    дополнить таблицей - В.5.1

    Таблица В.5.1 - Степень наклона и угол уточненного направления наклона резервуара

    Значение угла n2 при Nп =...

    Показание рейки по правой разбивке lп, мм

    Значение угла n2 при Nл =...

    Показание рейки по правой разбивке lл, мм

    l¢п

    l²п

    l¢л

    l²п

    1

    2

    3

    4

    5

    6

    -1°

    +1°

    -2°

    +2°

    -3°

    +3°

    -4°

    +4°

    -5°

    +5°

    -6°

    +6°

    -7°

    +7°

    -8°

    +8°

    -9°

    +9°

    -10°

    +10°

    -11°

    +11°

    -12°

    +12°

    -13°

    +13°

    -14°

    +14°

    -15°

    +15°

    -16°

    +16°

    Примечания

    1 В головках граф 1,4 вносят числа разбивок Nп, Nл (например Nп = 17).

    2 l¢п, l"п (графы 2, 3) - показания рейки по правым противоположным разбивкам.

    3 l¢л, l"л (графы 5, 6) - показания рейки по левым противоположным разбивкам.

    таблицу В.6 изложить в новой редакции:

    Таблица В.6 - Текущие значения параметров поверочной жидкости

    Номер измерения

    Объем дозы (DVc)j, дм3, или показание счетчика жидкости qj, дм3 (Nj, имп.)

    Уровень Hj, мм

    Температура жидкости, °С

    Избыточное давление в счетчике жидкости pj, МПа

    Расход Q, дм3/мин, (дм3/имп.)

    в резервуаре (Tp)j

    в счетчике жидкости (Tт)j

    1

    2

    3

    4

    5

    6

    7

    1

    2

    3*

    4

    5*

    ...

    ...

    ...

    * Номера измерений, выделяемые только для счетчиков жидкости с проскоком и только при применении статического метода измерений объема дозы жидкости.

    дополнить таблицей - В.9.1:

    Таблица В.9.1 - Параметры счетчика жидкости со сдвигом дозирования и проскоком

    Наименование параметра

    Значение параметра при расходе Q, дм3/мин

    100

    150

    200

    250

    Сдвиг дозирования С, дм3

    Проскок Пр, дм3

    Приложение Г. Пункт Г.1.2. Формулу (Г.2) изложить в новой редакции:

    «Lвн = Lн - 2p(d1 + dс.к + dс.п),                                             (Г.2)»;

    экспликацию дополнить абзацем:

    «dс.п - толщина слоя антикоррозийного покрытия».

    Пункт Г.1.3 дополнить подпунктами - Г.1.3.1 - Г.1.3.4:

    «Г.1.3.1 За значение длины внутренней окружности второго пояса

    резервуара с плавающей крышей (L*вн.ц)2п при высоте поясов, равной 1500 мм, принимают значение длины внутренней окружности первого пояса (L*вн.ц)1п, определяемое по формуле

    (Lвн.ц)1f = Lн - 2p(d1 + dс.к + dс.п).                                   (Г.2а)

    Г.1.3.2 Длину внутренней окружности второго пояса резервуара с плавающей крышей при высоте поясов от 2250 до 3000 мм (L**вн.ц)2п или длину внутренней окружности третьего пояса при высоте поясов 1500 мм (L*вн.ц)3п определяют методом последовательных приближений, используя результаты отложений хорды S1 на уровне 1600 мм или на уровне 1200 мм по 9.1.12.2 настоящего стандарта в следующей последовательности:

    а) в качестве первого приближения внутреннего диаметра пояса принимают значение внутреннего диаметра первого пояса, определенного по формуле (3и);

    б) вычисляют центральный угол aх1, соответствующий остаточной хорде S0п (например для второго пояса), по формуле

    x033.png

    где S0п - длина остаточной хорды, измеренной по 9.1.12.7;

    D21 - внутренний диаметр второго пояса в первом приближении, значение которого принимают равным значению внутреннего диаметра первого пояса, определенного по формуле (3и);

    в) вычисляют разность углов bх1 по формуле

    bх1 = a1т1 + aх1 - 360°,

    где a1 - центральный угол, вычисленный по формуле (3к) при числе отложений хорды т1 и принимаемый за значение первого приближения центрального угла;

    г) вычисляют центральный угол a2 во втором приближении по формуле

    x034.png                                                     (Г.2б)

    Если bх1 < 0, то в формуле (Г.2б) принимают знак «+», если bх1 > 0 - знак «-»;

    д) вычисляют внутренний диаметр второго пояса D22 во втором приближении по формуле

    x035.png

    где S1 - хорда, длину которой вычисляют по формуле (3ж);

    е) проверяют выполнение условия

    x036.png

    Если это условие не выполняется, то определяют значение внутреннего диаметра второго пояса D32 в третьем приближении, вычисляя последовательно параметры по формулам:

    x037.png

    bх2 = a2т1 + aх2 - 360°,

    x038.png

    x039.png

    Проверяют выполнение условия

    x040.png

    Если это условие не выполняется, то делают следующие приближения до выполнения условия

    x041.png

    Выполняя аналогичные операции, указанные в перечислениях а) - е), определяют внутренний диаметр третьего пояса резервуара.

    Г.1.3.3 Длины внутренних окружностей второго (L*вн.ц)2п и третьего (L**вн.ц)3п поясов резервуара с плавающей крышей вычисляют по формулам:

    x042.png

    x043.png

    где D2, D3 - внутренние диаметры второго и третьего поясов, определенные методом последовательного приближения по Г.1.3.2.

    Г.1.3.4 Длины внутренних окружностей вышестоящих поясов резервуара с плавающей крышей x044.png вычисляют по формуле

    x045.png                              (Г.10а)

    где x046.png - длина внутренней окружности первого пояса, вычисляемая по формуле (Г.2а);

    DRcpi - средние радиальные отклонения образующих резервуара, вычисляемые по формуле (Г.9);

    i - номер пояса, выбираемый для резервуаров:

    - при высоте поясов от 2250 до 3000 мм из ряда: 2, 3,..., n;

    - при высоте поясов 1500 мм из ряда: 3, 4,..., n;

    n - число поясов резервуара».

    Подпункт Г.2.1.2, пункт Г.2.2. Формулу (Г.9) изложить в новой редакции:

    «DRcpi = аср.i - аср1                                                            (Г.9)»;

    формула (Г.10). Заменить обозначение: DRc.pi на DRcpi.

    Пункт Г.2.5. Формулу (Г.12) изложить в новой редакции:

    «hi = hнi - Sihнхi + Si+1hнx(i+1),                                          (Г.12)»;

    экспликацию дополнить абзацами:

    «Si, Si+1 - величины, имеющие абсолютное значение, равное 1, и в зависимости от схемы нахлеста поясов в соответствии с таблицей Б.6 (графа 6) принимают знак «+» или «-»;

    hнx(i+1) - нахлеста (i + 1)-го вышестоящего пояса».

    Пункт Г.3. Наименование изложить в новой редакции:

    Источник: 1:

    Русско-английский словарь нормативно-технической терминологии > максимальный уровень

См. также в других словарях:

  • БАЗОВАЯ ДАТА — (base date) См.: базовый год (base year). Бизнес. Толковый словарь. М.: ИНФРА М , Издательство Весь Мир . Грэхэм Бетс, Барри Брайндли, С. Уильямс и др. Общая редакция: д.э.н. Осадчая И.М.. 1998 …   Словарь бизнес-терминов

  • БАЗОВАЯ ДАТА — (base year, base date) При расчете индексов – первый из ряда лет. Его часто принимают за 100, чтобы можно было сразу в процентах увидеть рост или падение, например если индекс цен показывает, что нынешний показатель равен 120, это имеет смысл… …   Финансовый словарь

  • БАЗОВЫЙ ГОД (БАЗОВАЯ ДАТА) — (base year, base date) При расчете индексов – первый из ряда лет. Его часто принимают за 100, чтобы можно было сразу в процентах увидеть рост или падение. Например, если индекс цен показывает, что нынешний показатель равен 120, это имеет смысл т …   Словарь бизнес-терминов

  • Базовая модель угроз безопасности персональных данных при их обработке, в информационных системах персональных данных (выписка) — Терминология Базовая модель угроз безопасности персональных данных при их обработке, в информационных системах персональных данных (выписка): Автоматизированная система система, состоящая из персонала и комплекса средств автоматизации его… …   Словарь-справочник терминов нормативно-технической документации

  • DAX — (Deutscher Aktienindex, Дакс) DAX это важный фондовый индекс Германии DAX: вычисление, графики, Франкфуртская биржа и сотрудничество с компаниями Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • базовый год — базовая дата При расчете индексов первый из ряда лет. Его часто принимают за 100, чтобы можно было сразу в процентах увидеть рост или падение, например, если индекс цен показывает, что нынешний показатель равен 120, это имеет смысл только в… …   Справочник технического переводчика

  • Nikkei 225 — Nikkei 225 …   Википедия

  • DAX — Deutscher Aktienindex Дата начала расчёта 1 июля 1988 года …   Википедия

  • Amex Gold BUGS Index — Дата начала расчёта 15 марта 1996 года Статус Рассчитывается Биржи Американская фондовая биржа Базовое значение …   Википедия

  • Amex Oil Index — Дата начала расчёта 27 августа 1984 года Базовое значение 125,00 пунктов Базовая дата 27 августа 1984 года Компоненты …   Википедия

  • BET-10 — Дата начала расчёта 19 сентября 1997 года Статус Рассчитывается Биржи Бухарестская фондовая биржа Базовое значение …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»